Engineering peroxidase activity in myoglobin: the haem cavity structure and peroxide activation in the T67R/S92D mutant and its derivative reconstituted with protohaemin-l-histidine.
نویسندگان
چکیده
Atomic co-ordinates and structure factors for the T67R/S92D metMbCN mutant have been deposited with the Protein Data Bank, under accession codes 1h1x and r1h1xsf, respectively. Protein engineering and cofactor replacement have been employed as tools to introduce/modulate peroxidase activity in sperm whale Mb (myoglobin). Based on the rationale that haem peroxidase active sites are characterized by specific charged residues, the Mb haem crevice has been modified to host a haem-distalpropionate Arg residue and a proximal Asp, yielding the T67R/S92D Mb mutant. To code extra conformational mobility around the haem, and to increase the peroxidase catalytic efficiency, the T67R/S92D Mb mutant has been subsequently reconstituted with protohaem-L-histidine methyl ester, yielding a stable derivative, T67R/S92D Mb-H. The crystal structure of T67R/S92D cyano-metMb (1.4 A resolution; R factor, 0.12) highlights a regular haem-cyanide binding mode, and the role for the mutated residues in affecting the haem propionates as well as the neighbouring water structure. The conformational disorder of the haem propionate-7 is evidenced by the NMR spectrum of the mutant. Ligand-binding studies show that the iron(III) centres of T67R/S92D Mb, and especially of T67R/S92D Mb-H, exhibit higher affinity for azide and imidazole than wild-type Mb. In addition, both protein derivatives react faster than wild-type Mb with hydrogen peroxide, showing higher peroxidase-like activity towards phenolic substrates. The catalytic efficiency of T67R/S92D Mb-H in these reactions is the highest so far reported for Mb derivatives. A model for the protein-substrate interaction is deduced based on the crystal structure and on the NMR spectra of protein-phenol complexes.
منابع مشابه
Effect of the distal histidine on the peroxidatic activity of monomeric cytoglobin
The reaction of hydrogen peroxide with ferric human cytoglobin and a number of distal histidine variants were studied. The peroxidase activity of the monomeric wildtype protein with an internal disulfide bond, likely to be the form of the protein in vivo, exhibits a high peroxidase-like activity above that of other globins such as myoglobin. Furthermore, the peroxidatic activity of wildtype cyt...
متن کاملEffect of distal histidines on hydrogen peroxide activation by manganese reconstituted myoglobin.
Myoglobins provide an opportunity to investigate the effect of the secondary coordination sphere on the functionality and reactivity of non-native metal porphyrins inside well-defined protein scaffolds. In this work, we reconstituted myoglobin by the replacement of natural heme with manganese(iii) protoporphyrin IX and firstly investigated the effect of distal histidine on the reaction of Mn(II...
متن کاملConformational switching between protein substates studied with 2D IR vibrational echo spectroscopy and molecular dynamics simulations.
Myoglobin is an important protein for the study of structure and dynamics. Three conformational substates have been identified for the carbonmonoxy form of myoglobin (MbCO). These are manifested as distinct peaks in the IR absorption spectrum of the CO stretching mode. Ultrafast 2D IR vibrational echo chemical exchange experiments are used to observed switching between two of these substates, A...
متن کاملReaction of variant sperm-whale myoglobins with hydrogen peroxide: the effects of mutating a histidine residue in the haem distal pocket.
The reaction of hydrogen peroxide with a number of variants of sperm-whale myoglobin in which the distal pocket histidine residue (His64) had been mutated was studied with a combination of stopped-flow spectroscopy and freeze-quench EPR. The rate of the initial bimolecular reaction with hydrogen peroxide in all the proteins studied was found to depend on the polarity of the amino acid side chai...
متن کاملHaem iron-containing peroxidases.
Peroxidases are enzymes that utilize hydrogen peroxide to oxidize substrates. A histidine residue on the proximal side of the haem iron ligates most peroxidases. The various oxidation states and ligand complexes have been spectroscopically characterized. HRP-I is two oxidation states above ferric HRP. It contains an oxoferryl (= oxyferryl) iron with a pi-radical cation that resides on the haem....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 377 Pt 3 شماره
صفحات -
تاریخ انتشار 2004